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Abstract
We analyze the polynomial solutions of a nonlinear integral equation,
generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor.
40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some
cases, an orthogonal solution exists and we give its general form in terms of
kernel polynomials.

PACS numbers: 02.30.Gp, 02.30.Rz, 02.30.Mv
Mathematics Subject Classification: 45G10, 33C45

1. Introduction

In [2], Bender and Ben-Naim studied the polynomial solutions of the nonlinear integral
equation ∫ b

a

P (y)P (x + y) ω(y) dy = P(x). (1)

They showed that the solutions Pn(x) are orthogonal with respect to the measure xω(x) and
considered other equations of the form∫ b

a

P (y)P [F(x, y)] ω(y) dy = P(x), (2)

with

F(x, y) = xy, x + a1 + a2y and x + f (y)

(see http://staff.science.uva.nl/∼thk/art/comment/BenderComment.pdf for Tom Koorn-
winder’s comment on their paper). They continued their investigation in [3], where they
used limit relations and asymptotic properties of the Laguerre and Jacobi polynomials to
obtain some interesting integral identities.

The purpose of this paper is to generalize their results to the case F(x, y) = α(y)+xβ(y)

for arbitrary functions α(y) and β(y) and to understand the nature of the families of orthogonal
polynomials that arise as solutions of (1).
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2. General case

Let ω(y) be a non-negative integrable function on the interval (a, b), such that∫ b

a

ω(y) dy = 1 (3)

and let Lω be the linear functional defined by

Lω [f ] =
∫ b

a

f (y)ω(y) dy. (4)

We say that a sequence of polynomials (Pn) is an orthogonal polynomial sequence (OPS) with
respect to Lω if [4]

(1) Pn(x) is a polynomial of degree n.

(2) Lω [PnPm] = hnδn,m, n,m = 0, 1, . . . ,

where hn �= 0 for all n and δn,m is Kronecker’s delta.

To warranty the existence of a polynomial sequence solution (Pn), we consider the special
form of equation (2)∫ b

a

Pn(y)Pn [α(y) + xβ(y)] ω(y) dy = Pn(x), (5)

where α(y) and β(y) are integrable functions on (a, b) .

Example 1. Let

ω(y) = 3
2y2, a = −1, b = 1, α(y) = 5

3y, β(y) = μ �= 0.

Then, we have

P0(x) = 1, P1(x) = 1

μ
±

√
μ − 1

μ
x, . . . .

Example 2. Let

ω(y) = 3
2y2, a = −1, b = 1, α(y) = 3

20μy, β(y) = y.

Then, we have

P0(x) = 1, P1(x) = 1 ± √
1 − μ

2
+

5

3
x, . . . .

The previous examples illustrate how, even for simple functions, the integral equation (5)
can have unique or multiple solutions which are real or complex depending on the choice of
the parameter μ.

Writing

Pn(x) =
n∑

k=0

ckx
k, (6)

we have

Pn [α(y) + xβ(y)] =
n∑

k=0

γk (y) xk, (7)

where

γk (y) = βk(y)

n∑
j=k

cj

(
j

k

)
αj−k(y).
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Using (6) and (7) in (5), we get

Lω [Pnγk] = ck, 0 � k � n. (8)

Introducing the matrix A defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

( 0
0

)
Lω[Pn]

( 1
0

)
Lω[Pnα]

( 2
0

)
Lω[Pnα

2] · · · (
n

0

)
Lω[Pnα

n]

0
( 1

1

)
Lω[Pnβ]

( 2
1

)
Lω[Pnαβ] · · · (

n

1

)
Lω[Pnα

n−1β]

0 0
( 2

2

)
Lω[Pnβ

2] · · · (
n

2

)
Lω[Pnα

n−2β2]

...
... 0

. . .
...

0 0 0 · · · (
n

n

)
Lω[Pnβ

n]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

and the vector

CT = [c0, · · · cn],

we see from (8) that C is an eigenvector of A with corresponding eigenvalue 1.

Therefore, to have a solution C different from the zero vector, it must be true that
Lω[Pnβ

k] = 1 for some 0 � k � n. Note that if we impose the condition Lω[Pnβ
n] = 1, then

the vector CT =[0, · · · 0, cn] is always an eigenvector of A. However, this leads to trivial
sequences of the form Pn(x) = cnx

n.

A possible non-trivial solution of the equation AC = C is to take A = I, where I denotes
the identity matrix. Thus, we require that

Lω[Pnα
j−iβi] = δi,j , 0 � i � j � n. (10)

Since (10) is a system of
(

n+2
2

)
equations with n + 1 unknowns, it admits (if any) infinitely

many solutions. In order to have a unique solution, we consider the following cases:

(1) α(y) = 0, β(y) �= 1.

We see from (9) that for A to be equal to the identity matrix, we need to have

Lω[Pnβ
i] = 1, 0 � i � n, (11)

which, using (3), we can rewrite as

Lω[Pn(1 − βi)] = 0, 0 � i � n,

or

L(β−1)ω

[
Pn

(βi − 1)

β − 1

]
= 0, 0 � i � n.

Thus, (11) is equivalent to

Lω[Pn] = 1, L(β−1)ω[Pnβ
i] = 0, 0 � i � n − 1. (12)

If β(y) is linear, it follows from (12) that (Pn) will be a sequence of orthogonal polynomials
with respect to the linear functional L(β−1)ω, provided that L(β−1)ω [Pnβ

n] �= 0. For this
last condition to be true, β (y) − 1 must not vanish in the interval (a, b) . Hence, β (y)

should be of the form

β (y) = σ (y − ζ ) + 1,

with σ �= 0 and ζ /∈ (a, b) .
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(2) α(y) �= 0, β(y) = 1.

In this case, we must impose that

Lω[Pn] = 1, Lω[Pnα
i] = 0, 1 � i � n,

or, equivalently,

Lω[Pn] = 1, Lαω[Pnα
i] = 0, 0 � i � n − 1. (13)

If

α(y) = τ(y − ς),

with τ �= 0 and ς /∈ (a, b), the polynomials Pn(x) will be orthogonal with respect to Lαω.

We summarize the results of this section in the following theorems.

Theorem 3. Let β(y) �= 1 on (a, b) and suppose that �n �= 0 for all n, with

�n =

∣∣∣∣∣∣∣∣∣

1 Lω[y] · · · Lω[yn]
L(β−1)ω[1] L(β−1)ω[y] · · · L(β−1)ω[yn]

...
...

. . .
...

L(β−1)ω[βn−1] L(β−1)ω[yβn−1] · · · L(β−1)ω[ynβn−1]

∣∣∣∣∣∣∣∣∣
. (14)

If (Pn) is defined by

Pn(x) = 1

�n

∣∣∣∣∣∣∣∣∣

1 x · · · xn

L(β−1)ω[1] L(β−1)ω[y] · · · L(β−1)ω[yn]
...

...
. . .

...

L(β−1)ω[βn−1] L(β−1)ω[yβn−1] · · · L(β−1)ω[ynβn−1]

∣∣∣∣∣∣∣∣∣
, (15)

then, ∫ b

a

Pn(y)Pn [β(y)x] ω(y) dy = Pn(x)

for all n.

Proof. It is clear from (14) and (15) that

Lω[Pn] = 1, L(β−1)ω[Pnβ
i] = 0, 0 � i � n − 1

for all n � 1. We have∫ b

a

Pn(y)Pn [β(y)x] ω(y) dy − Pn(x)

=
∫ b

a

Pn(y)Pn [β(y)x] ω(y) dy −
∫ b

a

Pn(y)Pn(x)ω(y) dy

=
∫ b

a

Pn(y) {Pn [β(y)x] − Pn(x)} ω(y) dy.

Using (6), we get∫ b

a

Pn(y)Pn[β(y)x]ω(y) dy − Pn(x) =
n∑

k=1

ckLω[Pn(β
k − 1)]xk

=
n∑

k=1

ckL(β−1)ω

[
Pn

(βk − 1)

β − 1

]
xk =

n∑
k=1

ck

⎡
⎣k−1∑

j=0

L(β−1)ω[Pnβ
j ]

⎤
⎦ xk = 0. �

4
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Theorem 2. Let α(y) �= 0 on (a, b) and suppose that �n �= 0 for all n, with

�n =

∣∣∣∣∣∣∣∣∣

1 Lω[y] · · · Lω[yn]
Lαω [1] Lαω [y] · · · Lαω [yn]

...
...

. . .
...

Lαω[αn−1] Lαω[yαn−1] · · · Lαω[ynαn−1]

∣∣∣∣∣∣∣∣∣
. (16)

If (Pn) is defined by

Pn(x) = 1

�n

∣∣∣∣∣∣∣∣∣

1 x · · · xn

Lαω[1] Lαω[y] · · · Lαω[yn]
...

...
. . .

...

Lαω[αn−1] Lαω[yαn−1] · · · Lαω[ynαn−1]

∣∣∣∣∣∣∣∣∣
, (17)

then, ∫ b

a

Pn(y)Pn [α(y) + x] ω(y) dy = Pn(x)

for all n.

Proof. It is clear from (14) and (15) that

Lω[Pn] = 1, Lαω[Pnα
i] = 0, 0 � i � n − 1

for all n � 1. We have∫ b

a

Pn(y)Pn [α(y) + x] ω(y) dy − Pn(x) =
∫ b

a

Pn(y) {Pn [α(y) + x] − Pn(x)} ω(y) dy

=
n∑

k=1

qk(x)Lω[Pnα
k] =

n−1∑
k=0

qk+1(x)Lαω[Pnα
k] = 0,

where we have used (6) and the polynomials qk(x) are defined by

qk(x) =
n∑

j=k

cj

(
j

k

)
xj−k. �

Theorem 3. Let ζ /∈ (a, b) and (Pn) be an OPS for L(y−ζ )ω satisfying

Lω [Pn] = 1, n = 0, 1, . . . . (18)

Then, ∫ b

a

Pn(y)Pn [(y − ζ ) (τ + σx) + x] ω(y) dy = Pn(x). (19)

Proof. Using (18), we see that∫ b

a

Pn(y)Pn[(y − ζ )(τ + σx) + x]ω(y) dy − Pn(x)

=
∫ b

a

Pn(y){Pn[(y − ζ )(τ + σx) + x] − Pn(x)}ω(y) dy

=
n∑

k=1

qk(x)(τ + σx)kLω[(y − ζ )kPn]

=
n−1∑
k=0

qk+1(x)(τ + σx)k+1L(y−ζ )ω[(y − ζ )kPn] = 0. �

5
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The two main cases considered in [2], correspond to the special values

ζ = 0, τ = 1, σ = 0, for Pn(y)Pn(x + y)

ζ = 1, τ = 0, σ = 1, for Pn(y)Pn(xy).

Unfortunately, the reciprocal of theorem 3 is not true in general. For example, taking

ω(y) = e−y, a = 0, b = ∞, ζ = 0, τ = 1, σ = 1,

we get as a possible solution of (19)

P0(x) = 1, P1(x) = 2 − x, P2(x) = 7
5 − 1

5x − 1
10x2,

P3(x) = 43
17 − 32

17x + 3
34x2 + 1

34x3, . . . .

We have

Lyω [P1] = 0, Lyω [P2] = 2
5 , Lyω [P3] = 0, Lyω [yP3] = − 10

17 · · ·
and therefore (Pn) is not an OPS for L(y−ζ )ω.

In the following section, we shall see that the only solutions of (19) which are an OPS for
L(y−ζ )ω, consist of the so-called kernel polynomials corresponding to Lω.

3. Kernel polynomials

Let (pn) be the sequence of orthonormal polynomials with respect to Lω defined by (4). The
kernel polynomials Kn(x; ζ ) corresponding to Lω with parameter ζ are defined by [6]

Kn(x; ζ ) =
n∑

k=0

pk (ζ )

Lω

[
p2

k

]pk(x), (20)

where pn (ζ ) �= 0 for all n. Using the Christoffel–Darboux identity [1], we have

Kn(x; ζ ) = 1

Lω

[
p2

n

] pn+1 (x) pn (ζ ) − pn (x) pn+1 (ζ )

x − ζ
.

The kernel polynomials Kn(x; ζ ) have the following properties [4]:

(1) They are orthogonal with respect to the functional L(y−ζ )ω.

(2) They have the reproducing property

Lω [Kn(y; ζ )pn (y)] = pn(ζ ),

for any polynomial pn (x) of degree less or equal than n.

It follows that, up to a multiplicative constant λ, the kernel polynomials Kn(x; ζ ) are
solutions of (1). To find λ we use (18) and obtain

1 = Lω [λKn(x; ζ )] = λ

n∑
k=0

pk (ζ )

Lω

[
p2

k

]Lω [pk (x)] = λ.

Thus, we have the following result.

Corollary 6. The only OPS (Pn) which is a solution of the nonlinear integral equation∫ b

a

Pn(y)Pn [(y − ζ ) (τ + σx) + x] ω(y) dy = Pn(x)

is Pn(x) = Kn(x; ζ ), where Kn(x; ζ ) is defined by (20).

6
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Example 7. Let

ω(y) = 1
2 , a = −1, b = 1, ζ = 1, τ = 1, σ = 0.

Then, we have

P0(x) = 1, P1(x) = 1 + 3x, P2(x) = − 3
2 + 3x + 15

2 x2, . . . .

If we denote by Pn(x) the Legendre polynomials, defined by [5]

Pn(x) =
n∑

k=0

(n

k

) (−n − 1

k

)(
1 − x

2

)k

,

then it follows from (20) that

Pn(x) =
n∑

k=0

Pk(1)

(2k + 1)−1 Pk(x) =
n∑

k=0

(2k + 1) Pk(x).

Example 8. Again, let

ω(y) = e−y, a = 0, b = ∞, ζ = 0, τ = 1, σ = 1.

Then,

Pn(x) =
n∑

k=0

Lk(0)Lk(x) =
n∑

k=0

Lk(x),

(Pn) is an OPS for L(y−ζ )ω, where

Ln(x) =
n∑

k=0

1

k!

(n

k

)
(−x)k

denotes the Laguerre polynomial [5]. We have

P0(x) = 1, P1(x) = 2 − x, P2(x) = 3 − 3x + 1
2x2,

P3(x) = 4 − 6x + 2x2 − 1
6x3, . . . .

4. Concluding remarks

We have studied the polynomial solutions of the nonlinear integral equation (5). We have
shown that, in some cases, a solution which is an OPS exists and we have given the general
form of these orthogonal solutions.

However, much remains to be discovered about the solutions of (5). A few questions that
come to mind are:

(1) For which choice of α and β will there be a unique solution?
(2) Is it possible to describe all possible solutions?
(3) For which values of ζ, τ and σ will the solution of (19) be unique? It seems that for this

to be true, one needs to consider the symmetric case, when

ζσ + τ = 1.

Is this condition sufficient?

We hope that other researchers will find this problem interesting and continue its analysis.
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